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ABSTRACT

An important problem in cosmology is characterizing the topology of the large-scale structure in the uni-
verse. There has been a debate between hierarchical clustering models in which clusters are high-density
islands in a low-density sea, and cell structure models in which voids are isolated low-density islands in a
high-density sea. To examine the relative connectedness of the high- and low-density regions we have con-
structed maps with a density contour chosen so that the high- and low-density regions occupy equal volumes.
We find that the CfA catalog shows a sponge-like topology. The high- and low-density regions are both con-
nected. They are equivalent and completely interlocking. The boundary surface between the high- and low-
density regions has an average negative curvature and is characterized by a large number of holes. Such a
result is plausible theoretically because the initial conditions in both cold dark matter scenarios and massive
neutrino scenarios have sponge-like topologies. The high- and low-density regions in the initial conditions
must be equivalent because they are due to random quantum fluctuations, and a change in sign would reverse
their roles. The topology does not change at all as long as the fluctuations are in the linear regime, and on the
scales of interest the fluctuations are only just now coming out of the linear regime. In the cold dark matter
and neutrino scenarios the typical hole sizes are of order the smoothing diameter or the damping length,
whichever is larger. The sponge-like topology explains how the universe can have a rather frothy appearance

without being organized into regular cells. A computer algorithm for measuring topology is proposed.

Subject headings: cosmology — galaxies: clustering

I. INTRODUCTION

One of the important problems in cosmology today is char-
acterizing the nature of the topology of the large-scale struc-
ture in the universe. There have been two major competing
models: the hierarchical clustering model (Soniera and Peebles
1978) and the cell structure of the universe model (Joeveer and
Einasto 1978). The present paper proposes a third alternative,
namely that the large-scale structure of the universe exhibits a
sponge-like topology.

Clusters and superclusers have been known for some time.
The richest of these have total luminosities of several hundred
L, (L,~85x10°2"% Ly, where h=Hy100kms™!
Mpc ') and represent density enhancements of at least a factor
of several over the background. The existence of these objects
naturally leads to the hierarchical clustering picture in which
clusters are seen as islands of high density in a low-density sea.
In fact, Soniera and Peebles (1978) have produced simulations
of the observed clustering by starting with an empty space and
placing spherical clusters at random within it. Within each
cluster, subclusters are placed in a hierarchical sequence. This
kind of model appears natural in a cold dark matter model (see
Peebles 1982; Blumenthal et al. 1984) where galaxies form first
and then cluster gravitationally. This is a model in which the
high-density regions are seen as isolated clumps, while the low-
density regions constitute a single connected region. This
model is like white polka-dots on a black background.

! Enrico Fermi Postdoctoral Fellow.

341

The cell structure model of Joeveer and Einasto is based on
the adiabatic fluctuation model of Doroskevich, Sunyaev, and
Zeldovich (1974), who found that if the fluctuations on small
scales are damped (as occurs with baryonic adiabatic models
and massive neutrino models), caustics will form causing
material to collide on sheets or pancakes. The sheets then frag-
ment into galaxies. In this model the superclusters are the
pancakes and form before the galaxies. Joeveer and Einasto
characterized the final state as cells filling space (like a
honeycomb), with the interiors of the cells being essentially
empty and the cell walls being the high-density regions. The
cells form a space-filling tesselation of polyhedrons. Galaxies
reside in the walls. Where three or more walls meet at an edge,
gravity will cause more galaxies to congregate there, forming a
denser filament. Where four or more edges meet at a vertex, a
dense cluster will form (see Matsuda and Shima 1983). Fila-
ments and walls seen edge on are supposed to be responsible
for the filamentary appearance of the Shane and Wirtanen
counts and other samples. This picture is one in which isolated
voids (the cell interiors) exist in one connected high-density
medium, like black polka dots on a white background. Topo-
logically the cell structure model (which is like a honeycomb) is
identical to a “ Swiss cheese ” model in which one starts with a
uniform high-density medium and excises “tremas” or voids
from it. In fact, Mandelbrot (1983) has produced a simulation
of galaxy clustering by starting with a uniform high-density
distribution of galaxies and then excising randomly placed
spherical volumes. Adding to the validity of this model is the
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fact that large voids do in fact exist, perhaps the most famous
being the Bootes void discovered by Kirshner et al. (1981). This
is a region at least 6000 km s~! = 60h~! Mpc in diameter
(h = Hy/100 km s~! Mpc~?) in which no bright galaxies have
been found so far. The region must be at least several times less
dense than the average. If filled to average density, this void
would have contained a total luminosity of L ~ 1700 L,.
There are no Abell clusters in this void, but there are some near
its edges, consistent with the cell picture (Bahcall and Soniera
1983). It is interesting that the amount of luminosity missing
from the largest voids is comparable to the amount of lumin-
osity contained in the largest superclusters (see Aarseth, Gott,
and Turner 1979).

Shandarin (1982) developed a test designed to discriminate
between these two models. He centers a bubble of radius r on
each galaxy. If r is small enough, the bubbles will be isolated,
but for some critical value of r.;, the bubbles will percolate,
and it will be possible to walk across the entire sample region
(in this case he studies a region of size 40k~ Mpc) going only
through chains of linked bubbles. Let r, be the value of r;, for
percolation for a Poisson distribution of galaxies. For the hier-
archical picture we expect that r; > r, because the bubbles
will have to be larger to get us from one isolated cluster to
another. For the cell structure model we expect r.; <7,
because high-density regions are already connected, and in fact
simulations with adiabatic fluctuations with a lower damping
cutof, as in the Zeldovich pancake picture, do show this. Shan-
darin finds that the real sky shows r;, <r, so that the high-
density regions do appear to be connected, and the cell
structure model is favored. On the other hand, Melott et al.
(1983) and Davis et al. (1985) found that cold dark matter
(CDM) scenarios also have r.,; < r,, even though galaxy clus-
ters do grow in a hierarchical fashion in these models, presum-
ably as a result of the large amount of power on large scales.

At the TAU conference on large-scale structure in Crete,
Einasto and Miller (1983) showed three-dimensional views of
galaxy distributions based on all available redshifts assembled

by J. Huchra. This was presented in a movie in which the

distribution of galaxies was rotated so that one could see a
three-dimensional effect. The visual impression was not in
good agreement with either of the simple hierarchical or cell
structure scenarios. There were some clusters and some voids,
but the sky was messier than either model. Clusters appeared
to be connected to each other in a lazy, haphazard fashion, but
voids did not appear to be isolated in cells. Instead, they
seemed to spill sloppily into each other in a random fashion.
The distribution did have a somewhat frothy character, as
expected from the cell structure picture, but one did not
actually see cells enclosing voids. Thus neither model appeared
to give an accurate representation of the topology of the data.

Historically it is interesting to note that a similar problem of
topology occurred in the study of solar granulation. Here the
object was to determine whether the solar granules represented
just some form of general random turbulence or were really
organized into convection cells. What was done
(Schwarzschild, private communication) was to obtain a high-
quality photograph at the best possible resolution and make a
high-contrast print such that half the surface area of the pho-
tograph was white and half was black. If the granules were
really organized into convection cells, the hot rising cell inte-
riors should be white on the photograph, and the cool cell
walls should be black. Thus the photograph should look like
white polka dots on a black background. This was in fact the
case, confirming the existence of convection cells.
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We will do the same thing in three dimensions with the
galaxy distribution. Since galaxies are discrete points (J-
functions in density), we first will smooth the data. This can
always be done in principle by convolving the data with a
Gaussian smoothing function whose width is at least of order
the mean galaxy-galaxy separation: ¢ ~ (1)~ !/3, where 7 is the
mean number density of galaxies brighter than some cutoff, say
L ~ 0.85L,. Then we will have a smooth function of density as
a function of position in three dimensions. Now separate the
sample into high- and low-density regions, where the dividing
line is chosen so that the total volume occupied by the high-
and low-density regions is exactly equal. The high-density
regions are thus defined as regions where the density is higher
than the median value.

What does the picture look like? Is it white polka dots on a
black background, or black polka dots on a white back-
ground? We are so conditioned to looking at two-dimensional
pictures that it is easy to come to the erroneous conclusion that
if the high-density regions are connected, the low-density
regions must not be, and vice versa. In fact, as we shall see in
the next section a third possibility exists in three dimensions:
that the high- and low-density regions are both connected and
interlocking in a sponge-like topology.

II. TOPOLOGY OF THE HIGH- AND LOW-DENSITY REGIONS

For our observational sample we will use the CfA catalog
with complete redshifts down to magnitude 14.5. For our pur-
poses we want a volume-limited cubical sample. We will put
the Earth at one vertex of the cube. From our location this
cubical volume will subtend one octant of the celestial sphere.
We want to pick an octant of the sky that will be included in
the Zwicky catalog (6 > 0°) and which is at high galactic lati-
tude. We pick the octant defined by the spherical triangle ABC,
where Ais at 5 = 90°, Bis at § = 0°, a = 9"49™, Cis at 6 = 0°,
o = 15"49™ (1950). The triangle is centered on the north galac-
tic pole in right ascension and lies entirely in the Zwicky
catalog. The vast majority of the triangle lies at galactic lati-
tude by > 40°. The only part that is below b, = 40° is a small
triangular region 13° across near vertex A and two really negli-
gible triangular regions ~1° across near vertices B and C.
Since galactic apsorption is low and perhaps negligible above
by, = 40°, we will not make any absorption corrections. This
should be quite satisfactory over most of the cube, but we will
keep in mind that we may miss some galaxies in the small
region near vertex A. Below b, = 40° we can miss galaxies due
to absorption and to the fact that the CfA catalog is not guar-
anteed to be complete below this galactic latitude. Next we
need to pick the size of the cube. We wish to pick the largest
cube, in which the number of galaxies in the volume-limited
sample is still near the maximum. If the cube is picked too
small it will include many faint galaxies, but its volume will be
so small that the total number of galaxies is also small. If the
cube is too big, the absolute magnitude cutoff required will be
such that only a few galaxies make it. We have adopted a cube
with a diagonal length of 50h~* Mpc and a side length of
L =28.9h~! Mpc. (A similar volume-limited sample in a cube
with a 40h~! Mpc side would have had less than half as many
galaxies, for example.) From the CfA catalog down to 14.5 mag
we construct a volume-limited sample including all galaxies
brighter than M, = —18.99 + 5 log h (=0.72L,). Galaxies are
placed at their redshift distances in the usual way after the
Earth’s motion of ¥ = 300 km s~ ! in the direction I, = 90°,
by = 0° has been subtracted. The sample includes 153 galaxies
and includes the Virgo supercluster and beyond, reaching
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almost to the Coma cluster which lies just beyond the cube’s
diagonal from the Earth. The number of galaxies present is
sufficient to construct a good number density in a 4 x 4 x 4
array of 64 cells, each 7.2h~ ! Mpc on a side. The mean number
of galaxies per cell is 2.39. The median density is one galaxy per
cell. Twenty-seven of the 64 cells have zero galaxies; 26 cells
have two or more galaxies. Thus, most of the low-density cells
have no galaxies in them at all, while most of the high-density
cells have two or more. Since peculiar velocities of galaxies are
generally less than 700 km s~ !, these cells are sufficiently large
so that peculiar velocities will not typically cause galaxies to be
erroneously placed in cells. One clear exception to this is the
Virgo cluster core where peculiar velocities have clearly
smeared the cluster over two adjacent cells. But this is of no
real consequence for us since both of those cells would be
above the median in any case. The density is assumed constant
within each cell and then is smoothed with a cubical hatbox
smoothing function of total width [ = 6.3h~! Mpc = 7L/32
(just a bit smaller than one cell). (Smoothing an initial data set
with a cubical hatbox smoothing function of total width [
means that the density at a particular point in the smoothed
data set is equal to the average density in a cubical volume I
centered on that point in the unsmoothed initial data set.) This
produces a smooth density distribution throughout the cube
where the effective total smoothing length is approximately

. = 9.6h~! Mpc. This is evaluated on a 32 x 32 x 32 grid. To
eliminate boundary effects periodic boundary conditions are
adopted, a choice which facilitates later comparisons with large
N-body fast Fourier simulations where this is used. The
median density is determined by starting at a high-density
contour where only a small fraction of the 32 x 32 x 32 grid
points are above it and lowering it by increments of 2% until at
least half the grid points are above it. Because of the clustering
the median density p,, in the smoothed sample is significantly
below the mean: p,, = 0.73p. Setting the contour level at the
median number density we then construct pictures of the high

CfA-HIGH DENSITY

FiG. la
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and the low-density regions in Figure 1. Figure la shows the
high-density regions. The Earth is at the bottom front vertex,
and the north celestial pole is in the vertical direction. The
Virgo cluster is just above the bottom face near the center.
Figure 1b shows the low-density regions.

Several comments can be made about this picture. First of
all, the high-density parts form one connected region; i.e., it is
possible to travel from any point in the high-density region to
any other without ever leaving it. (Recall that because of the
periodic boundary conditions, when one exits the top of the
cube one reenters the cube at the bottom; similarly with the
front and back and left and right faces.) Second, the low-
density parts also form one connected region. Mathematically
this is known as a sponge (Mandelbrot 1983). The body of a
marine sponge forms one connected region; the sea water also
forms one connected region percolating throughout the
sponge. Another way of saying this is to note that there is only
one supercluster and only one void. Sponges are characterized
by many holes; chambers are connected by tunnels. Thus both
the high- and low-density regions are multiply connected. This
means we can make a number of complete cuts in the high- (or
low-) density region before it falls apart into two pieces. The
region has a high genus number. (We will discuss this property
further in the next section). The high- and low-density regions
are completely interlocking. Remarkably, the high- and low-
density regions are geometrically quite equivalent and indistin-
guishable from each other. This sponge-like topology fits in
well with the quantitative picture one gets looking at Einasto
and Miller’s (1983) three-dimensional galaxy calalog. The high-
density regions are connected and do percolate, just as Shan-
darin found. However, the low-density regions also percolate
so that voids flow into each other rather than being sur-
rounded on all sides by high-density regions.

We note at this point that there is a low-density region along
the nearest vertical edge of the cube near the top. This is the
most distant part of the cube near 6 = 90° and is the only part

CfA-LOW DENSITY
FiG. 1b

F1G. 1.—CfA volume limited sample. Earth is at the bottom front corner. Cube side length is 28.9h " Mpc. (a) High-density region; (b) low density region.

Periodic boundary conditions assumed in Figs. 1-6,9, 12, 13.
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of the cube likely to have been affected by galactic obscuration
and completeness. Note that if this were changed to a high-
density region it would not affect any of the conclusions above.

Not only are the high- and low-density regions both con-
nected, and both percolate, but they are completely inter-
locked. The high- and low-density regions are completely
equivalent. Looking just at figures 1a and 1b, there is really no
clue as to which is the high-density one and which is the low-
density one. Space has been divided into two interlocking and
completely equivalent regions.

Are there any theoretical reasons for the universe showing
this sponge-like structure? Interestingly there are. According
to inflationary scenarios the fluctuations which lead to galaxies
and clusters are due to quantum fluctuations with a Zeldovich
power spectrum. At any given scale such fluctuations will have
a Gaussian distribution with random phases and as many posi-
tive fluctuations as negative fluctuations. If such fluctuations
grow by gravitational instability, the growth rate is indepen-
dent of the amplitude of the fluctuations so the fluctuations
retain their Gaussian nature as they grow as long as they stay
in the linear regime. Likewise when fluctuations are damped by
either Silk damping (for baryons) or Landau damping (for
neutrinos), positive and negative fluctuations are damped
equally. The end result of this is that if we examine the initial
conditions present at recombination where everything is still in
the linear regime, we will find that they are exactly symmetric
with respect to positive and negative density fluctuations. The
high-density regions (where the density is above average) must
have the same topology as the low-density regions (below
average) because a simple change in sign of the original (totally
random) quantum fluctuations would have reversed their roles.
Thus at recombination the high-density regions cannot look
like white polka dots on a black background. A simple change
of sign of the initial quantum fluctuations would turn this into
black polka dots on a white background, and the high-density
regions would go from being not connected to being con-
nected. The high- and low-density regions must have exactly
the same degree of connectedness because their roles are inter-
changeable. As we have seen, a sponge-like topology allows
both the high- and low-density regions to be connected. Fur-
thermore, we can construct sponges whose insides and outsides
are identical interlocked regions. As we shall see in the next
section, a study of the boundary surface between the high- and
low-density regions shows that the surface is expected in
general to be negatively curved in order that both sides of the
surface be equivalent. This in turn allows us to deduce the fact
that the high- and low-density regions should be interlocked
with many holes and columns.

We have constructed a map of the high- and low-density
regions in the initial conditions (1 + z = 100) of a heavy neu-
trino model with Q, = 1 a Zeldovich n = 1 spectrum at large
scales and a co-moving Landau damping cutoff scale of 1, ~
13(Q,h%) ! Mpc. The cube depicted has a comoving side length
of L =36 (Q,h%)~' Mpc at the present epoch. Since the
Landau damping cutoff is not infinitely sharp, choosing an
exact value of /. is somewhat a matter of convention. We have
adopted that of Szalay and Bond (1983), 4, ~ 41m3¢ Mpc ~
13(Q, h*)~! Mpc, where m5, is the mass of the heaviest neu-
trino in units of 30 eV and we are assuming that this neutrino is
much more massive than the others (see Melott 1983). The
model is computed on a grid of 32 x 32 x 32 unit cubes with
no smoothing. The boundary conditions are taken to be
periodic. Since the perturbations are still in the linear regime,
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the median density is equal to the average density. The result is
shown in Figures 2a and 2b. It indeed has a sponge-like topol-
ogy. The size of the holes and columns in the sponge is approx-
imately equal to A, = 0.36L. There is no structure on scales
smaller than this because it has been damped by Landau
damping. As expected, the high- and low-density regions are
entirely equivalent.

Thus the universe is expected to start off with a sponge-like
topology for its high- and low-density regions. How does this
change as the universe expands? For a long time after recombi-
nation the topology does not change at all. This is because the
fluctuations are all in the linear regime and all grow at the
same rate (dp/p) o a, so that the map of density fluctuations in
comoving coordinates has exactly the same shape but the
amplitudes are all increased. The contour for p = p has an
amplitude of (6p/p) = 0 and does not move at all as the fluctua-
tions grow. After the fluctuations enter the nonlinear regime,
high- and low-density perturbations do have different growth
rates and the map can change topology. However, it is impor-
tant to note that on the scale of galaxy clusters and super-
clusters we are just barely coming out of the linear regime at
the present epoch. In the CfA data the smallest scale we exam-
ined was A ~ 7.2h~! Mpc. The observed covariance function is
given by &(r) = (r/ro) '8 for r <ry, = 5h~! Mpc and &(r) < 1
for r > ro = 5h~! Mpc (see Peebles 1980). Thus the average
density fluctuations on scales larger than 7.2h~! Mpc are less
than one even today. The situation is even somewhat better
than this since &(r) measures the average density fluctuations,
and we are interested in median values. The average value is
due in part to occasional fluctuations that are greater than
unity. The median values of the density fluctuations are then
less than the average. The clustering pattern we are observing
is therefore just coming out of the linear regime on the scales of
interest, and the topology on large scales should look approx-
imately the same as it did at recombination.

To test this we have run a fast Fourier simulation of this
heavy neutrino model using a 32 x 32 x 32 grid with periodic
boundary conditions. It is evolved from the initial epoch at
1 4+ z = 100 to the present where the initial fluctuation ampli-
tude has been adjusted so that the amplitude of clustering is
correct at the present epoch. Figures 3a and 3b show the high-
and low-density regions at the present epoch. The data are
computed on a 32 x 32 x 32 grid smoothed with a cubical hat
box function of width 7L/32 just like that used for the CfA
data. The boundary is drawn at the median density as mea-
sured in the unit cubes of size L/32. Because of the nonlinear
clustering p,, = 0.64p, an effect similar to that seen in the CfA
data. The high-density region in both cases is chosen to occupy
exactly half the volume. The high-density region at the present
epoch also has a sponge-like topology with holes and columns
of size 4,. Comparing Figures 3 and 2, there is a striking simi-
larity. The majority of the holes and columns are in exactly the
same positions. The nonlinear effects have caused some
changes, occasionally a hole connecting two parts of the low-
density regions disappearing, for example.

While there are some differences, the overall agreement is
striking. If we want to see a map of the initial conditions of the
universe, the CfA map in Figure 1 is about as good as we can
do. As an additional experiment we also did a larger massive
neutrino simulation with A, = 13(Qh%)~! Mpc as before, but
with L = 72(Qh?)~! Mpc. Again the holes had sizes of order /_,
but there were many more holes than in Figures 2 and 3 simply
because we were examining a larger volume. It also had a
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F1G. 2.—Initial conditions at 1 + z = 100 for an Q = 1 massive neutrino model where the short-wavelength cutoff length is 0.36 of the cube side length which is 36
(Qh») (1 + z)~ ! Mpc. (a) High-density region; (b) low-density region.

7l
v-FINAL v-FINAL
HIGH DENSITY LOW DENSITY
FiG. 3a FiG. 3b

FiG. 3.—Evolution of the Q = 1 massive neutrino model whose initial conditions are shown in Fig. 2. This figure shows the final conditions at the present epoch.
Cube side length is 36(QA%) ™! Mpc. (a) High-density region; (b) low-density region.

Models with cold dark matter (CDM) also show a sponge-
like topology where the size of the smallest holes is 4., the
smoothing length which is adopted. An example of this is
shown in Figure 4. This is a CDM model with a primordial
inflationary Zeldovich spectrum, a spectrum whose index n

sponge-like topology, behaving in every way like the simula-
tion in Figures 2 and 3.

An important point to mention here is that the neutrino
models do in fact show a sponge-like topology rather than the
cell structure topology proposed by Joeveer and Einasto.
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FI1G. 4—Cold dark matter, Q = 1 model final conditions. Cube side length is 36(Qh?)~* Mpc. (a) High-density region, (b) low-density region.
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F1G. 4a
goes smoothly from n = —3 as small scales ton = +1 at large

scales [(5p/p) oc M ~1/2*+n/61] The characteristic scale at which
the change in index occurs is the horizon scale when the uni-
verse first becomes matter dominated. This is proportional to
(Qh?*)~1. At large scales where n >0 this causes anti-
correlations in the covariance function. The covariance func-
tion goes negative at a radius r, = 18(Qh?)~! Mpc, where r is
evaluated at the present epoch (Davis et al. 1985). This is the
type of spectrum which is generally produced in inflationary
cosmologies. Gott (1982) and Gott and Statler (1984) have
proposed inflationary models with Q < 1. In these models our
universe is produced from a single bubble of asymmetric
vacuum. The universe inherits its overall negative curvature
from the bubble formation event, and on top of this there is a
spectrum of quantum fluctuations which, on the scales of inter-
est, is a primordial Zeldovich spectrum as described above, but
with an appropriately low value of Qh?. Bahcall and Soneira
(1983) have found that Abell clusters have a positive cluster-
cluster covariance function out to a radius of r = 100k~ Mpc.
If this is to be explained in a CDM model, Qh < 0.18 (Davis et
al. 1985). The model shown is a CDM spectrum with Q =1
started at 1 + z = 100 and evolved to the present epoch. The
data are computed on a 32 x 32 x 32 grid. Figures 4a and 4b
show the results at the present epoch. The cube side length is
L =36(Qh?)~! Mpc. The densities at the present epoch are
computed on the 32 x 32 x 32 grid and then smoothed with a
cubical hatbox function of total width A, =7L/32 =179
(Qh?)~! Mpc. The median density is p,, = 0.87p. As in previous
cases the median is below the mean due to the clustering. The
figure shows that the CDM scenario produces a sponge-like
topology. The smallest holes and tunnels visible have a size of
order 4,. Some of these tunnels and chambers are longer than
4., the size of the largest features perhaps being related to the
scale at which the spectrum index n becomes positive: r, =
18(Qh?)~ ! Mpc = iL. This is thus a sponge which may show

two characteristic scales, 4. and r.. Further studies on this
would be interesting. 4

In Figure 5 is shown an Aarseth, Gott, and Turner (1979)
4000 body simulation with Poisson initial conditions, a power-
law spectrum with n = 0. This is similar to the spectral index
shown at these scales by CDM inflationary models in which n
goes smoothly from —3 to 1, being approximately n = 0 on the
scale r, = 18(Qh?)~ ! Mpc. The model has Q = 0.095 starts at a
redshift of 1 + z = 22.63 and by the present epoch has a rea-
sonable clustering amplitude. The starting redshift represents
the point where the galaxies become density enhancements of
order unity and start to gravitate like point masses. These are
softened masses with a softening length of € ~ 254~ * kpc, and
they have a Schecter luminosity function. The simulation at the
present epoch encompasses a spherical volume 50h~* Mpc in
diameter. From this we construct a cubical volume-limited
sample of L = 28.9h~! Mpc just like the CfA data. Densities
are computed on a 4 x 4 x 4 grid and are smoothed just as in
the CfA data. Because of the clustering, p,, = 0.87p. The result
is shown in Figures 54 and 5b. A second model, exactly the
same except that it had Q = 1 and started at 1 + z = 10.73,
was also computed. This model at the present epoch had p,, =
0.63p. Both the Q = 1 and Q = 0.095 models show a sponge-
like topology with hole size approximately equal to the
smoothing radius A.. These both look quite similar to the CfA
data.

As an additional experiment we also did smoothed, pure,
power laws with n = —3, and n = + 3. All showed a sponge-
like topology.

All the comments about the symmetry of the initial condi-
tions, the fact that the topology remains unchanged through-
out the linear regime and that we are just coming out of the
linear regime on these scales, apply to the CDM models just as
they do to the neutrino models. By doing the smoothing we are
effectively building in a short-wavelength cutoff in the spec-
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FI1G. 5—Poisson, Q = 0.095 model final conditions. Cube side length is 28.9h ! Mpc. (a) High-density region, (b) low-density region.

trum just as that which occurs by damping in the neutrino
models. It is interesting to note that the CDM models also
produce a sponge-like topology instead of the island cluster
topology one might have at first expected.

In principle, one can distinguish between the neutrino and
CDM models by counting how the number of holes change as
one varies the smoothing length. This will be treated at length
in a later paper (Hamilton, Gott, and Weinberg 1986). Roughly
speaking, in the CDM model the number of holes per unit
volume is ~1/842, where /. is the smoothing length we have
adopted for the data (see discussion in § III). But in the neu-
trino model the number of holes per unit volume is ~1/84,
only if the adopted smoothing length A, > 1, (where A, =
13[Q, h?]~* Mpc is the Landau damping cutoff scale). If 4, <
A,, the number of holes per unit volume remains ~ 1/843 for all
values of adopted smoothing length 4, < 4,. Thus if we keep
lowering the smoothing length in the neutrino model, the
number of holes remains constant beyond a certain point, but
in the CDM model the number of holes keeps going up as the
smoothing length is lowered. This test is workable as long as
the expected neutrino Landau damping scale 4, = 13 (Q, h?)™*
Mpc is larger than the correlation length ro ~ 5h~* Mpc. (We
always want to pick a smoothing length for the data A, larger
than the correlation length so that we are looking at fluctua-
tions which are still just coming out of the linear regime; (see
Hamilton, Gott, Weinberg 1986 for more details on this.)

Next let us examine the topology produced in a completely
different galaxy formation scenario, the explosive blast wave
model of Ostriker and Cowie (1981) and Ikeichi (1981). In this
picture small seeds trigger galaxy formation in a self-
propagating blast wave. This leads to expanding thin spherical
shells of recently formed galaxies with voids inside and
unprocessed material on the outside. Before percolation
occurs, the topology is like the Swiss cheese model, and after
percolation occurs it looks like the Joeveer and Einasto cell
structure model. In either case the low-density regions are iso-

lated, and the high-density regions are connected. Since this is
a nonlinear mechanism, the symmetry arguments about high-
and low-density regions do not apply. The most likely scenario
is that percolation has in fact occurred. In this case voids
should be surrounded on all sides by sheets of galaxies. The
problem is what happens to the galaxies once they have formed
on these sheets. By gravitational instability they should flow
toward the edges of the polyhedral cells. This process can tear
holes in the sheets, allowing adjacent voids to be connected
and changing the topology to a sponge-like topology.

To test this we have used an Aarseth, Gott, and Turner
(1979) simulation with 1000 equal point masses Q = 0.3 and
(1 4+ 2)gare = 5.17, which is taken to be the redshift at which the
galaxies form on the sheets. The simulation has a spherical
volume with comoving diameter of 50h~! Mpc. Initially the
galaxies are placed in Poisson fashion on six planes
X = +833h"! Mpc, Y= +833h"! Mpc, Z= +833h"!
Mpc (comoving coordinates). This simulates a cell structure
based on a regular space filling lattice of cubes of size 16.664*
Mpc. This structure has been suggested by Heavens (1985) as
representative of a cell structure type of model. The galaxies
are started with a cold Hubble flow and allowed to cluster. As
expected, eight large clusters form at the vertices since there is a
flow from the faces to the edges and then vertices. Gott and
Dickinson (1986) have found that the final conditions of this
model have an excellent power-law covariance function with
&(r) oc r~ 2. The map of the final conditions is shown in Figures
6a and 6b with p,, = 0.80p. The cube is of size L = 20h~ ' Mpc,
centered on X = Y = Z = 0 and parallel with those axes. The
data are sampled on a 4 x 4 x 4 grid with smoothing applied
just as in the CFA data. Roughly speaking, the high-density
regions are the eight corner cells and the 24 edge cells, while the
low-density regions are the eight center cells and the 24 face
cells. The topology is sponge-like. Is this due to nonlinear
tearing of holes in the cell walls or just a result of poor
resolution in sampling? It is important to note that we really
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do not have enough resolution in this diagram to study the
topology properly. A grid of 16 x 16 x 16 is really required to
show the topology of the initial conditions of this model prop-
erly. In that case 2744 of the 4096 cells must be empty, the
median contours are contained in the void regions, and the
voids are correctly shown to be isolated. If the resolution is too
poor as in the 4 x 4 x 4 case, then the cell walls appear thicker
than they actually are and take up more than half of the
volume, and some holes must be punched through them by the
median contour at their lowest density points even in the initial
conditions. Since we only have 1000 galaxies in our spherical
volume, we do not have good enough statistics to do a study at
16 x 16 x 16 resolution. One needs an average of at least two
galaxies per unit cell to construct a reasonable median density
contour.

This illustrates some of the problems in dealing with realistic
data sets which include only bright galaxies. For the present we
can note the amount of movement that takes place from the
faces to the edges and vertices. Using the 4 x 4 x 4 = 64 unit
cells for the cubical volume, in the initial conditions we have an
average of 11.5 galaxies per corner cell, 7.6 galaxies per edge
cell, 3.8 galaxies per face cell, and zero galaxies per center cell.
This distribution simply depends on how many sheets cross
through a cell (three perpendicular sheets pass through each
corner cell, for example). In the final conditions clusters form
approximately in the eight corners. The corner cells have an
average of 17.1 galaxies in each. The edge cells have an average
of 5.7 galaxies in each, the face cells have an average of 1.1
galaxies in each, and the center cells have an average of zero
galaxies in each. Thus there is a significant movement away
from the face cells, and the holes through the faces shown in
figures 6a and 6b are quite justified. A study of this at a
resolution of 8 x 8 x 8 shows 59% of the face cells to be
empty, also leading to holes in the faces. Thus the nonlinear
effects of gravitational instability can cause holes to form in the
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Fi6. 6.—Final conditions of a model with an initial cell structure geometry. Cube side length is 20h~* Mpc. (a) High-density region; (b) low-density region.

faces of the cells and convert the topology to a sponge-like
topology as well. When holes form in the faces in a cell struc-
ture model so that the galaxies are primarily located in the
edges of the polyhedral cells, this is usually referred to as a net
(see Shandarin and Zeldovich 1983) or a lattice (connected
lattice of strings) (Einasto, Klypin, and Shandarin 1983;
Einasto et al. 1984). A net or a lattice of strings has a sponge-
like topology.

In this case it is interesting to note that although the topol-
ogy is sponge-like it is not necessary that the inside and outside
of the sponge be equivalent as is the case for the CDM and
neutrino models. With enough resolution we might notice that
the high-density regions are thinner, i.e., the probability of a
high-density unit cell having a low-density cell as a neighbor
would be greater than the probability of a low-density cell
having a high-density cell as a neighbor. In the CDM and
neutrino models these probabilities would be equal.

Finally we will consider the type of topology which might
result from string assisted galaxy formation (Zeldovich 1980;
Vilenkin 1981a). Note that if strings are sufficiently massive
(u = 10** g cm ™) to promote galaxy formation, they should
also eventually be observable via gravitational lensing
(Vilenkin 1981b; Gott 1985; Kaiser and Stebbins 1984) and
gravitational radiation (Hogan and Rees 1984). Schramm
(1985) has noted that if galaxies were preferentially located on
or near strings this would naturally produce a &(r)ocr™?
covariance function on large scales with no anticorrelations at
very large scales, as would be the case in the CDM and neu-
trino models where n— 1 as the scale becomes larger than the
comoving horizon scale at which the universe becomes matter
dominated. Schramm has argued that this, in principle, would
make it easier to understand the Bahcall and Soniera result
that the Abell clusters have a positive covariance function out
to scales of more than 100h~* Mpc. (This could be explained in
a CDM scenario only if Qh < 0.18 [Davis et al. 1985], but of
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course there are low Q inflationary models available; see Gott
1982; Gott and Statler 1984.) While it is far from clear how and
where galaxies would be formed in a realistic string scenario
where closed loops of string as well as infinite strings and their
motions would have to be considered, we can at least mention
what topology would result if galaxies clustered with a topol-
ogy similar to that of the strings themselves. The high-density
regions would be like strands of spaghetti, and the low-density
regions would be one connected region. If closed loops were
present, there would be some “Spaghetti-O.s” as well. Note
that both the high-density and low-density regions would per-
colate. Shandarin’s percolation test would be satisfied because
you could construct a string of bubbles that would cross the
entire region staying on one high-density strand of spaghetti.
This is not a sponge-like topology, however, because the high-
density regions are not all connected, they are in separate dis-
connected strands. The fluctuations associated with string
assisted galaxy formation are not Gaussian with random
phases, so our arguments about the equivalence of the high-
and low-density regions do not apply. One possibility,
however, is that galaxy formation would be triggered primarily
by small loops which would themselves be reasonably random-
ly distributed, so that the end result would be to mimic the
Poisson case of Figure 5 which would produce a sponge-like
topology.

Thus at face value the CfA data are consistent with either the
CDM or massive neutrino models and might be consistent
with the Ostriker-Cowie model. The holes in the CfA data are
about the size of the adopted smoothing length 4, ~ 9.6h~!
Mpc. In the Ostriker-Cowie model the hole size is of order
one-half the cell structure size, so the cells should be smaller
than ~19h~! Mpc. Hogan (1984) and Vishniac and Ostriker
(1985) have pointed out that in the simplest explosion model
the maximum cell size must be less than 9 Mpc in order to
avoid making fluctuations in the microwave background that
are too large. If the bubbles are smaller than 9 Mpc, we could
be seeing just the Poisson fluctuations on large scales provided
by the small-scale bubbles. For the neutrino model the hole
size is expected to be of order the larger of the smoothing
length and the Landau damping cutoff 4, ~41m35 Mpc, where
m, 30 is the mass of the heaviest neutrino in units of 30 eV. Thus
m, > 130h eV, Qh > 1.35 (see Doroshkevich et al. 1980;
Centrella and Melott 1983; Frenk, White, and Davis 1983;
Klypin and Shandarin 1983). As Frenk, White, and Davis
(1983) have discussed, there are difficulties in such a model
making galaxies early enough to explain quasars. The problem
is that the clustering is best explained if we are just coming out
of the linear regime now. For galaxies and QSOs to form, we
need something to come out of the linear regime before
1 + z ~ 4. Melott (1985) has noted that this condition may be
fulfilled if only a small fraction of the material goes out of the
linear regime, since QSOs are rare bright objects. Still, we are
at the limits of making such models work. As Frenk, White,
and Davis have noted, one way out is if Q, ~ 0.3, so that
superclusters form at 1 + z ~ 4 but clustering stops growing at
1 + z ~ 3; hence we are still not much out of the linear regime
today. Such an alternative is not available if we need a small
value of .. A caveat to mention here is that the CfA sample
may not be large enough to constitute a fair sample of the
universe. It is possible that we are still looking inside a large-
scale high-density region and seeing mass fluctuations in that.
Note in this regard that if 2, & 60h~! Mpc is characterized by
the structure seen in the Kirschner et al. (1981) void, we have
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Qh =~ 0.3. In our CfA cubical volume the total luminosity in
galaxies brighter than 0.72L, is Ly = 242L,. With a Schechter
luminosity function with index o ~ 1, as appears appropriate
for the local supercluster (Turner and Gott 1976), then the total
luminosity density in the cube including all the faint galaxies
below the cutoff is ~1.8 x 108k Ly Mpc™3. This compares
with the mean luminosity density for the universe as a whole of
2 x 10%h Ly Mpc™® deduced by Kirshner, Oemler, and
Schechter (1979) from a sample out to r = 200k~ Mpc. This
supports the claim that the CfA sample constitutes a fair
sample. But in any case we must be somewhat conservative in
deducing the value of 4, for the neutrino model from the CfA
data. The CDM scenarios automatically predict hole sizes of
order the smoothing length and are therefore in excellent
agreement with the data.

In summary, the CfA data show a sponge-like topology.
Theoretically, we would expect both CDM and massive neu-
trino models to show a sponge-like topology. The Ostriker-
Cowie explosive galaxy formation scenario would form a cell
structure topology, but nonlinear gravitational instability
effects could tear holes in the walls and convert it to a sponge-
like topology as well. Galaxy formation induced by strings
might possibly lead to a spaghetti-type topology.

III. THE BOUNDARY BETWEEN THE HIGH- AND LOW-DENSITY
REGIONS

In a sponge-like topology the boundary between the high-
and low-density regions is a two-dimensional surface that is
multiply connected (has holes like a doughnut) and has an
overall average Gaussian curvature which is negative. We will
show in this section how these two properties are related.
Finally, we will show how the boundary surface may be
approximated by a polygon network and how this can lead to
a computer algorithm to measure the topology.

The Gaussian curvature of a two-dimensional surface at a
particular location is the reciprocal of the product of the two
principal radii of curvature at that point:

1
aja,’

K = 1)
In a positively curved surface (like a sphere) both radii of cur-
vature point in the same direction and therefore have the same
sign. (For a sphere of radius r,, K = ry 2.) If one of the radii of
curvature is infinite, as occurs in a cylinder, then K = 0, and
indeed a cylinder is intrinsically flat because we can make one
out of a flat sheet of paper without tearing or crimping it.
Saddle-shaped surfaces are negatively curved because in one
direction the surface curves upward and in the perpendicular
direction the surface curves downward, giving a; and a,
opposite signs.

For the sponges we are talking about, the boundary surface
divides space up into two equal and completely equivalent
parts. For a positively curved surface the inside is different
from the outside. The enclosed side is in the direction that both
radii of curvature point. On the other hand, for a western
saddle, both the horse’s and rider’s sides are equivalent. So a
negatively curved boundary surface has the possibility of divid-
ing space into two completely equivalent parts. The basic
reason that the sponge boundary is negatively curved is that
for such a surface one radius of curvature points into the high-
density region while the other radius of curvature points into
the low-density side, so that both are on an exactly equal
footing.
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The Gauss-Bonnet theorem states that for a compact two-
dimensional surface the integral of the Gaussian curvature
over the surface is given by

I=fK¢4=4ﬂl—w, 2

where g is the genus of the surface. Informally speaking, g is the
number of holes the surface has; strictly speaking, it may be
defined as the number of closed curves that may be drawn on
the surface without cutting it into two separate pieces. The
genus of the sphere is 0, the genus of a doughnut is 1. The genus
of a sphere with N handles is N. By extension we could say that
the genus of two spheres is —1 because they are already
separated into two pieces. Note that I is dimensionless because
K has units of (length)~2, while dA4 has units of (length)?. By
inspection the formula is correct for a sphere where K = rg 2,
A = 4nr, and g = 0. For a torus or doughnut I = 0. The inner
regions of the torus around the hole are negatively curved,
while the regions near the circumference are positively curved.

Any curved surface may be approximated by a network of
polygonal faces. A sphere, for example, may be approximated
by a polyhedron such as a cube. When such polygon networks
are used to approximate a compact surface of genus g, we find
that

I=Y D;=4n(l—g), ©)

where D; = 360° — ) V; is the angle deficit at each vertex and
V; are the vertex angles around the vertex. In a plane we expect
the sum of the vertex angles of the polygon faces meeting at a
vertex to be 360° = 2n. For example, in a checkerboard four
squares are around a vertex. Each square has a vertex angle of
90° and 4 x 90° = 360°, so the angle deficit is zero. But in a
cube which approximates a compact surface of genus 0, there
are only three squares around a vertex, so D; = 360° — 3
x 90° =90° at each of the eight vertices, giving Y D;=
720° = 4r, as expected. An isocahedron has 12 vertices with
five triangles around each vertex. The angle deficit at each
vertex is D; = 360° — 5 x 60° = 60° and ), D, = 720° = 4, as
expected. What is happening here is that the curvature is being
compressed into d-functions at the vertices. The faces have zero
curvature, and so do the edges which are just bent like cylin-
ders. Parallel transport arguments show that the integral of the
o-function of Gaussian curvature over the infinitesimal area of
the vertex is just equal to the angle deficit at the vertex. Figure
7 shows another example. We can make a polygon network of
32 squares which approximates a torus. It has eight squares on
top, eight squares on the bottom, 12 squares forming the cir-
cumference, and four squares forming the hole. There are 32
vertices in the figure: 16 of these vertices have four squares

TOROIDAL POLYGON NETWORK

Fi1G. 7—Surface of a torus may be approximated by a polygon network
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around them and therefore an angle deficit of zero; the eight
outer corner vertices have three squares around them and
therefore an angle deficit of 90° each; the eight inner corner
vertices have five squares around them and therefore an angle
deficit of D; = 360° — 5 x 90° = —90° each. Note that the
geometry around the inner vertices is saddle-shaped, with the
negative curvature indicated by the negative angle deficit at the
vertex. The sum of all the angle deficits for this figureis I =y,
D; = 0 as expected for a surface with g = 1. We can construct
a surface with two holes out of squares as well. Most vertices
will be surrounded by four squares and have zero angle deficit,
but there will be eight outer corner vertices with D; = +90°
and one set of eight inner vertices with D; = —90° for each
hole. The total of angle deficits will be Y, D; = —720° = —4n,
as expected for a surface with g = 2.

A regular polygon network in a three-dimensional Euclid-
ean space may be defined as one which is composed of regular
polygons, where the disposition of polygons around each
vertex is identical. There are five regular polygon networks
with positive curvature. They are the five regular polyhedra:
tetrahedron (triangles, three around a point), octahedron
(triangles, four around a point), isocahedron (triangles, five
around a point), cube (squares, three around a point), dodeca-
hedron (pentagons, three around a point). These are all sur-
faces of genus g = 0 with ) D, = 4n. There are three planar
networks: checkerboard (squares, four around a point),
chicken wire net (hexagons, three around a point), and triangle
tesselation (triangles, six around a point). These networks all
have D; = 0 and approximate surfaces of zero curvature. Note
that in addition to planar configurations these nets can be
constructed to approximate cylinders. (Cut four rows out of an
infinite checkerboard and bend them around so that the top
and bottom edge meet. One has then constructed an infinite
tube with square cross section approximating a cylinder. It is
regular because each vertex is identical.) Then there are regular
polygon networks that are negatively curved. The first of these
(squares, six around a point) was discovered by Petrie in 1926
(see Coxeter 1937). Coxeter (1937) discovered two more
(hexagons, four around a point, and hexagons, six around a
point). Gott (1967) discovered four more (pentagons, five
around a point, squares, five around a point, triangles, eight
around a point, triangles, 10 around a point). Wells (1969,
1977) discovered three more (triangles, seven around a point,
triangles, 9 around a point, triangles, 12 around a point). There
are several structural forms for some of these. These are known
variously as regular skew polyhedra or pseudopolyhedra, or
3D polyhedra. Some of these are illustrated in Figure 8. It can
be seen immediately that these are infinite repeating networks
that have a lot of holes and are multiply connected. In all cases
they are boundaries of sponges and divide space into two infin-
ite interlocking regions. In some of these cases the two regions
are identical to each other, so that the skew polyhedra forms
the boundary of a sponge of exactly the kind we are looking
for. In the figure, the skew polyhedra (triangles, 10 around a
point, squares, six around a point, hexagons, four around a
point, pentagons, five around a point, and hexagons, six
around a point) divide space into two equivalent regions. One
can also construct networks with squares, (five around a point)
and triangles (eight around a point), which divide space into
two equivalent parts.

Since we will often wish to divide space into cubic lattices for
sampling galaxy data, the network (squares, six around a
point) is particularly relevant. Imagine a space-filling tessela-
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around a point.
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around a point.

Hexagous, 6
around a point.

FiG. 8—Boundaries of sponges may be approximated by skew polyhedra: polygon networks with negative curvature (from Gott 1967)

tion of cubes where each has side of length A.. We can produce
a division of the cubes into high-density and low-density cubes
such that the boundary is the configuration squares, six around
a point (see Fig. 9). The smallest repeating unit cell for this
configuration is one 2 x 2 x 2 cubes. For any repeating
surface we can define the genus of the surface per repeat
volume as

I

-1
= — = - —, 4
g i JKdA in 4)

The reason for this is that we could always build a finite section
of the repeating structure and close off the ends with positively
curved sections (vertices with angle deficits) to make a compact
surface which obeys the relation g = —I/4n + 1. In the limit as
we make the finite section larger and larger the angle deficits
produced by closing off the ends can be ignored because they
go up as the square of the size of the region, while the value of
the angle deficits from the interior of the region goes up as the
cube of the size; the constant term becomes negligible as well.
Now there are as many vertices as cubes, and the angle deficit
at each is —180° in the squares (six around a point) configu-

ration. So the average angle deficit encountered per cube is

I = —7, and the volume density of holes is
dg 1
— = . 5
TR ©)

Thus the unit cell which has a volume of 842 should have two
holes. In a large finite realization of the configuration one can

HIGH DENSITY

LOW DENSITY

Fic. 9.—Example of a sponge-like topology. Boundary surface has a nega-
tive curvature; it is the skew polyhedron with squares, six around a point.
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see that if we leave all the tunnels connected on the plane z = 0,
we can cut all the tunnels in the x and y directions everywhere
else and still leave the surface connected. The unit cell contains
tunnels in the x, y, and z directions, so the ability to make two
cuts without disconnecting the surface means that three are on
average two holes per unit cell.

We are now in a position to evaluate the average number of
holes per unit volume in a distribution that has a cutoff in the
power spectrum at wavelengths shorter than length A, and a
Poisson spectrum at larger scales. Alternatively we can con-
sider this as a spectrum with no cutoff but where 4, is the scale
over which we have smoothed the data. We can model such a
spectrum as a series of cubical cells of length A. which are
randomly assigned to the high- or low-density regions with
50% probability.

To determine the curvature of the boundary surface region
we need to resolve ambiguities which arise when cubes meet at
edges or corners. A cube touches 26 other cubes, it shares a face
with six neighboring cubes, an edge with 12 neighboring cubes,
and a vertex with eight cubes. Now four cubes meet at an edge,
so if two of the four are to be neighbors, then the other two
cannot be. Also, eight cubes meet at a vertex, and if two of
them are neighbors, then the other three pairs cannot be. So a
cube can have on average only 14 real neighbors: 6 with which
it shares a face, 6 = 12/2 with which it shares an edge, and
2 = 8/4 with which it shares a corner. These ambiguities can be
settled in a very concrete fashion if we offset or stagger the
cubes slightly, as illustrated in Figures 10 and 11. By offsetting
or staggering the cubes slightly we are avoiding the artificial
degeneracy that brings eight cubes together at a vertex and
returning to the generic situation encountered in a space-filling
network where four polyhedrons meet at a vertex.

The offset configuration is illustrated in Figure 10. The
squares drawn with solid lines illustrate the cubes on the first
layer; the dashed squares illustrate the cubes on the second

level. The cubes on the third level would be placed directly

I
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OFFSET CUBES

F1G. 10—In analyzing topologies we divide space into a regular tesselation
of unit cubes. To resolve ambiguities about which of the cubes meeting at a
vertex are actually neighbors we may offset the cubes slightly. Squares drawn
with solid lines represent the cubes on one level, and dashed squares represent
the cubes on the next level. Each cube has 14 neighbors: six on its own level,
four on the level above, and four on the level below. Vertices are of two types, I
and IL Open circles represent minivertices of type A, and filled circles represent
minivertices of type B.
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STAGGERED CUBES

F1G. 11.—Another tesselation of unit cubes may be constructed by stagger-
ing them slightly. Squares drawn with solid lines represent the cubes on one
level, and the dashed squares represent the cubes on the next level. Each cube
has 14 neighbors: six on its own level, four on the level above, and four on the
level below. Vertices are of two types, III, and IV. Open circles represent
minvertices of type A, and filled circles represent minvertices of type B.

above the corresponding cubes in the first level, and so forth. A
vertex at which eight cubes originally met is replaced by six
minivertices where four cubes meet. There are two equally
frequent configurations labeled “1” and “II” on the diagram.
Each vertex consists of two minivertices of type A (open circles)
where two cubes from one level meet two cubes from the next
level, and four minivertices of type B (filled circles) where one
cube from one level meets three cubes from the next level.

Now we can calculate the average angle deficit produced
at a minivertex A. Since there is a 50% chance for any cube
to be high or low, there are 16 equally likely configurations
for the four cubes. They give angle deficits as follows:
(H,H,H,H) = (L, L, L, L) = 0° (surface does not pass through
the vertex); (H, H,L, L) =(L,L,H,H) = (L,H,H,H) = (H, L,
H H)=MHHLH=HHHL=HLLL=(LHL,
L)=(L, L H L= L LH=0;LHL H=H,L H,
L)=(L, H, H,L)=H, L, L, H) = —180°. Thus the average
angle deficit produced at a minivertex A is D, = —45° =
—180° x 4/16.

For a minivertex B, four of the 16 cases produce angle defi-
cits of +90°, four produce angle deficits of —90°, and eight
produce angle deficits of 0°, so the average angle deficit at a
minivertex B is Dy = 0°. Thus a vertex of type I produces an
average angle deficit of D; = 2D, + 4Dy = —90°. Now Dy, =
D,, so the average vertex produces an angle deficit of —90°,
and since there is one vertex per cube, the average value of I
per volume of 42 is —90° = —n/2. Thus the mean number of
holes per unit volume is

dg, 1

v 8i%°
Note that we obtain the same results if we use the staggered
cube configuration of Figure 11. In this case there are two
types of vertices with average angle deficits Dy, = 3D,
+ 4Dy = —135°, Dy = D, + 4Dy = —45°. Since types III
and IV occur with equal frequency, the average angle deficit
per vertex is —90°, giving dg,/dV = 1/82 just as in the offset

(6)
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cube case. Note that in both the offset and staggered cases each
cube, as expected, has 14 neighbors, six neighbors in its own
layer, four neighbors from the layer below, four from the layer
above. (Interestingly, the offset cube case is topologically
equivalent to the space-filling tesselation of truncated octa-
hedrons that forms a face centered cubic pattern; see Steinhaus
1969. Each truncated octahedron has 14 faces. Denoting every
other one as high-density produces the sponge shown in Fig. 8
[hexagons, four around a point].)

The average area of boundary surface appearing per unit
volume can be calculated as follows. Each cube has six faces
and two cubes share a face, so there are three faces in the lattice
for every cube. There is a 50% chance that any given face is a
member of the boundary surface (occurring when one of the
two cubes bordering it is high and the other low). Thus

d4 3

av =21’
Finally the average curvature on the boundary surface is given
by

™

_
32"

Thus we have shown that the boundary surface has an
overall negative curvature and that it is multiply connected
with many holes.

The high- and - low-density regions are, with occasional
exceptions, all connected. Every cube has 14 neighbors, so if
one is sitting on a high-density cube, the probability that one is
not connected to any other high-density cubes is
P =271 =6.1 x 2075. So it is possible to find some isolated
clusters or voids, but they are extemely rare.

In Figures 12 and 13 we show that even with a resolution of
4 x 4 x 4 and periodic boundary conditions it is possible to
find configurations where the average curvature of the bound-
ary surface is positive or zero. In Figure 12 is shown a posi-
tively curved boundary surface. One high-density cube is
surrounded by 26 low-density cubes so as to be completely
isolated. The boundary consists of the positively curved
boundary surrounding this cluster and a spaghetti-type
boundary surface with an average curvature of zero surround-
ing the low-density region. Thus the average curvature of the
boundary surfaces is positive. In the repeating pattern both the
high- and low-density regions are disconnected. Figure 13
shows a spaghetti-type topology where in the repeating struc-
ture high-density strands are surrounded by zero curvature
boundary surfaces. In this model the high-density regions are

(7

K> = ()

HIGH DENSITY LOW DENSITY

Fi1G. 12—Example where the topology includes an isolated high-density
cluster. The boundary has an overall average curvature which is positive.
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HIGH DENSITY LOW DENSITY

FiG. 13.—Example of a spaghetti-type topology in which the boundary has
an overall average curvature of zero.

disconnected, but the low-density region is connected. Another
topology that has boundary surfaces with zero curvature is a
sandwich topology where the high- and low-density regions
are alternating flat layers. We can construct one of these with a
resolution of 4 x 4 x 4 and periodic boundary conditions
simply by making the first and third layers of cubes high
density and the second and fourth layers low density. The
boundary surfaces are parallel flat planes with zero curvature.
The high- and low-density regions are equivalent. Both the
high- and low-density regions are disconnected. The sandwich
topology, like the sponge topology, treats the high- and low-
density regions on an equal footing. It could result from a
simple plane wave fluctuation in the initial conditions.
(Sandwich topologies with wavy layers also have boundary
surfaces with zero net curvature.) Of course, the sandwich
topology must come from rather special initial conditions in
which there are preferred directions and the fluctuations are in
phase. The point of these examples is that although there are
configurations with positive or zero curvature, there are not
very many of them, and with random phases in the initial
conditions configurations with negative curvature are much
more likely, in fact, the average value of the curvature is nega-
tive.

The results have been derived for a Poisson spectrum n = 0.
This is a reasonable approximation to CDM scenarios whose
index changes from n = —3 at very small scales to n = +1 at
very large scales and whose index is near n = 0 on the scales of
interest. We have already seen that neutrino models with
n = +1 at scales larger than the cutoff still show holes and a
sponge-like topology. It is interesting to show why ann = —1
spectrum with anticorrelations at large scales will still theoreti-
cally produce a sponge-like topology. One way to produce an
n > 0 anticorrelated spectrum is to place the galaxies approx-
imately on the vertices a regular lattice rather than in a
Poisson distribution (see Gott 1979). This assures that the fluc-
tuations on large scales are less than in a Poisson distribution
and therefore gives a spectrum with n > 0. Being nearly on the
vertices of a regular lattice, the galaxies are anticorrelated at
small scales since they are not allowed to have near neighbors.
We can duplicate this type of distribution by placing high- and
low-density cubes of size 4, in a regular three-dimensional
checkerboard pattern such that the high-density cubes form a
face centered cubic lattice. If you sit on a high-density cube,
you have six nearest neighbors (at a center-to-center distance
of /.) which are all low, thus giving anticorrelation at this scale.
The next 12 nearest cubes (at a distance of \/ 24,.) are all high,
but then the next eight (at a distance of \/34,) are low. In the
staggered or offset cube configuration, of the high-density
cube’s 14 actual neighors, eight are low and only six are high.
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Putting the high- and low-density cubes in a face-centered
cubic three-dimensional checkerboard pattern simulates an
anticorrelated n > 0 spectrum. The mean angle deficit per
vertex in this configuration averaged over the staggered and
offset cases is D = —270°, giving an average density of holes
dg,/dV = 3/8A2. So this type of distribution leads to a sponge-
like topology as well.

The simplest way to determine g, from a pair of figures such
as Figures 2a and 2b is to consider the high-density region to
be a finite block of driftwood bounded by not only the bound-
ary surface but by the intersections of the high-density region
with the faces of the cubical repeat cell just as it appears in
Figure 2a. Then we can define g} as the genus of the high-
density region, the number of complete cuts we can make in the
high-density block of driftwood without cutting it into two
pieces. Similarly, gF is the genus of the low-density region, the
number of cuts we can make in the finite low-density region
portrayed without cutting it into two pieces. Let V; be the
number of edge vertices, that is the number of points where the
boundary surface intersects an edge of the cubical repeat cell.
Then one can show that

_—_1 _1 * * ﬁ_

Even with structures as simple as those shown in Figures 1 and
2, it is surprisingly difficult to determine g, by hand using this
method, having only two-dimensional drawings like Figures 1
and 2 to consult. Even using two or more views of the cube
from different directions it is hard to determine g% and g¥
because some of the structure can still remain hidden from
view. Using available views and equation (9), we judge that
g, = 3 for the CfA sample (Fig. 1). For the CfA sample 4, ~
0.33L, and in the volume I using equation (6) we expect to find
approximately three holes. Similarly we judge that g, = 5 for
the neutrino initial conditions (Fig. 2). In this model 4, = 0.36L
and using equation (6) we expect approximately three holes.
We judge that g, =2 for the surface in Figure 6, again in
accord with expectations. For structures any more compli-
cated than these a computer algorithm would certainly be
desirable.

We may ask what happens to the boundary between the
high- and low-density regions with a Poisson spectrum if we
were to not take the median density as the dividing line, but
say the upper quartile instead. Let X be the fraction of the
volume occupied by the high-density region. Then the average
angle deficit at a minivertex A is D, = —4nX*(1 — X)?, and
at a minivertex B is Dy =n[X31 —~ X)+ X(1 — X)*]
—2nX?*(1 — X)2. Each vertex has on average D = 2D, + 4Dy,
S0

D =4n[X31 - X) + X(1 — X)® —4X%(1 — X)*]. (10)
The mean number of holes per unit volume is

dg, 4X*(1 - X)> —[X°(1 — X) + X(1 — X)°]

(11)

av - A2 ’
and
dA _6X(1—X)
o (12)
4n(1/6 — X + X2
(ky = L= X X, (13
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Now for X = 0.5, (K) = —mn/342, as we obtained earlier. In
fact, (K) reaches a minimum at X = 0.5. The mean value of
the curvature (K ) approaches a maximum of 2n/342 as either
X — 0 or X — 1. In these cases we have either isolated clusters
of size 1. as X — 0 or isolated voids of size 4, as X — 1. Now
(K)y =0for X = 0.5 + (6)” /2. Thus if we want to obtain iso-
lated clusters of spherical topology (white polka dots on a
black background), we must set X < 0.5 — (6)” /2 = 0.211.
When we reach the critical point X = 0.211 where the mean
curvature of the boundary surface is zero, this does not mean
that we have the spaghetti topology. Instead, it is likely that we
will get a sponge with many holes plus some isolated clusters.
When the number of holes is equal to the number of separate
pieces, the overall genus of the surface is zero and the average
curvature is zero. If we want to obtain isolated voids of spher-
ical topology, we must set X > 0.5 + (6) /2 = 0.789. By com-
parison Shandarin and Zeldovich (1983) have noted in passing
that in the case of a pure, random, but smooth function f
percolation emerges in the phase where f > f. occupies more
than 16% of the total volume. Thus percolation occurs in both
the high- and low-density phases, provided 16% < X < 84%
using our notation. (Despite this they argued that the voids
would be isolated because they found that only 8% of the
matter was expanding faster than the universe in all three
directions, and this they wished to associate with void material.
By contrast, we would note that their results are consistent
with a sponge-like topology with a median density contour in
the initial conditions, and we would note that this remains
virtually unchanged up to the present epoch.) Note that perco-
lation and connectedness are not the same thing. In the spa-
ghetti topology, both the high- and low-density regions
percolate, but only the low-density region is connected. If we
want to maximize the number of clusters of spherical topology
found, we must maximize D. This occurs at X = 0.0918 where
D = 0.04167. Thus at this value of X we obtain the highest
possible density of isolated spherical topology clusters pey =
1/24.042. This result with a Poisson distribution is a factor of
~3 lower than the absolute maximum density of clusters that
it would be possible to have if one arranged them on a lattice
with X = { and a cluster as one unit cube in a repeat pattern
that 3was 2 x 2 x 2 unit cubes in size. This would give p¢ =
1/842.

The division of space into cubes provides the basis for con-
structing a computer algorithm for measuring the genus of the
boundary surface of a given configuration. For more compli-
cated sponge-like topologies like that in Figure 4 a computer
algorithm to measure the topology is really needed. Suppose
we have a smoothed density function p(x, y, z) and a critical
density p, used to divide the high- and low-density regions.
Pick a grid size such that the size of a unit cell is smaller than
the smoothing length and smaller than any likely holes or
clusters one wants to measure. Then construct the density
matrix p(i, j, k) showing the value of the density at the center of
each cell. If p(i, j, k) = p., set p(i, j, k) = 1; otherwise, set p(i, j,
k) = 0. Let the vertex at the upper left back corner of cell (i, j, k)
be labeled vertex (i, j, k). The angle deficit at this vertex D(i, j, k)
depends on the values of the density in the eight surrounding
cells, p(i + m, j + n, k + 0) where m, n, o = 0 or 1. Each of the
256 possible configurations can be identified by an eight-bit
binary number, and the value of D(i, j, k) can be found from a
previously calculated look-up table. The look-up table is calcu-
lated using either a staggered or offset cube configuration using
the minivertices. Each vertex must be identified by type (I, II,
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III, IV) and whether the dotted or solid cubes (in Figs. 10 and
11) are on the top level. Depending on its position each vertex
will use one of eight look-up tables. Most vertices will not be
on the boundary, so the first thing will be to check if all eight
surrounding cell neighbors are either high or low. If this is the
case, D(i, j, k) = 0 and no further calculations are necessary.
Periodic boundary conditions can be treated in the usual way.
The genus of the surface will be given by

9gs = — .ZkD(i’ Js k)/an .
L,Js

If we want to find out of how many separate pieces the high-
density region consists, we can use standard “a friend-of-a-
friend is a friend ” algorithms to make a group calalog of all
high-density cells that are neighbors. Such antomated methods
should be invaluable in analyzing the topology in complicated
situations.

IV. CONCLUSIIONS AND AREAS FOR FURTHER RESEARCH

In this paper we have studied the relative connectedness of
the high- and low-density regions in the universe using a
median density contour which divides space into two equal
volumes. We find that the CfA data show a sponge-like topol-
ogy where the high- and low-density regions are each con-
nected. Both are interlocking and equivalent. One might say
that there is just one connected supercluster and one connected
void. The sponge-like topology arises naturally from the initial
conditions in inflationary models where the fluctuations are
due to quantum noise. In the initial conditions the connected-
ness of the high- and low-density regions must be identical
because a change of sign in the random quantum fluctuations
would reverse their roles. In adiabatic or massive neutrino
models where there is a short-wavelength cutoff A, and random
phases on larger scales, this leads to a sponge-like topology
with hole sizes of order 4,. While the fluctuations are still
growing in the linear regime there is no change in topology,
and at the scales of interest we are just coming out of the linear
regime today, so the topology remains sponge-like at the
present epoch. Since galaxy data consist of a series of -
functions, the data must be smoothed by at least the mean
intergalaxy distance scale before meaningful density contour
maps can be made. Smoothing by convolution with a Gaussian
is equivalent to multiplying the Fourier power spectrum by a
Gaussian and damps the small-scale fluctuations in exactly the
same way Landau or Silk damping would do. This introduces
a short-wavelength cutoff 4, equal to the smoothing diameter.
Thus CDM scenarios also show a sponge-like topology with a
hole size of order A.. The CfA data show a sponge-like pattern
that is consistent with this. A heavy neutrino model with a
Landau damping scale 4, ~ 10h~! Mpc also gives a sponge-
like topology that fits the data well. Some theories of galaxy
formation like the Ostriker, Cowie, and Tkeichi model really
produce a cell structure topology initially, but nonlinear gravi-
tational instability effects can rip holes in the cell walls and can
convert it into a sponge-like topology. In such scenarios the
high- and low-density regions are not required to be equiva-
lent. It is hard to say what topology would be produced by
string-assisted galaxy formation, but if the galaxy clustering
has a topology that mimics that of the strings themselves, then
it is a spaghetti-type topology.

We have shown that an important technique in analyzing
the topology of the high- and low-density regions is studying
the curvature of the boundary surface that separates them. We
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find that the surface has an overall negative curvature, and via
the Gauss-Bonnet theorem we are led to the conclusion that it
has many holes. A distribution with an n = 0 initial density
fluctuation spectrum and short-wavelength cutoff of 4, has a
mean volume density of holes of dg/dV = 1/872. Such studies
are facilitated by approximating the boundary surface with a
polygon network where the curvature is confined to the ver-
tices. This technique makes it possible to develop automated
computer algorithms for measuring the topology directly.

The sponge-like topology explains a number of things in the
observed distribution of galaxies. It explains how the universe
can have a frothy appearance without being divided neatly into
cells. It creates a messy appearance with clusters being con-
nected and voids spilling lazily into each other.

There are anumber of interesting areas for future research.
Certainly it would be interesting to look at the topology as a
function of density contour. If the contour is set at the median
value, we should get a sponge-like topology. If the density
contour is set high enough, we should see isolated clusters. It
would be interesting to plot the genus of the boundary surface
as a function of the fraction of the volume X in the high-
density phase. We have produced such a formula g(X) for
n =0 initial conditions with a short-wavelength cutoff. It
would be interesting to see such a curve for observed data sets
and simulations where nonlinear effects in the clustering could
be observed. At the highest density enhancements this consti-
tutes a study of the multiplicity function of rich clusters (see
Gott and Turner 1979). This gives us a way to bring a quanti-
tative analysis to the study of the topology of large-scale struc-
ture in the universe. In one case we have looked at the
topology of a higher density contour of the final conditions of
the massive neutrino model shown in Fig. 3. We find, for
example, a dense, thin filament running down the center of
what was a high-density tunnel in the initial conditions. The
sponge-like topology provides many columns and holes out of
which it is natural to form one-dimensional filaments. This
may explain why a number of simulations using massive neu-
trinos (where the density contour was chosen above the
median) show one-dimensional filaments rather than two-
dimensional sheets (Melott 1985; Frenk, White and Davis
1983). More investigation of the relationship between the orig-
inal sponge-like topology and the higher density contours
related to it would be useful.

It would be interesting to look further at CDM models. The
one we did showed a sponge-like topology with the smallest
holes equal to the size of the smoothing length, as expected.
However, the largest features such as lengths of tunnels were
perhaps related to the scale at which the spectrum index n
becomes positive. This type of sponge might theoretically be
expected to show two scales. CDM models with biased galaxy
formation might also be interesting to study (see Melott and
Fry 1985). One nice thing about our method is that it should be
rather insensitive to biased galaxy formation. In biased galaxy
formation models M/L is expected to be a monotonic function
of density, so that contours of constant luminosity density
should also be contours of constant density. The median
density contour and the median luminosity density contour
(defined as the contour which divides the volume into two
equal parts) should in principle, be identical. However, if the
biased galaxy formation produces a step function in M/L
versus density, this could create some statistical problems in
measurement.

On the observational side the most important thing is to
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explore the connectedness of the low-density regions. It would
be useful to have a test for evaluating whether the low-density
regions are connected that, like the Shandarin percolation test,
could be applied directly to the galaxy data and was not tied
directly to measuring density contours as we have done. An
investigation of whether the famous great voids are truely iso-
lated would be quite interesting. Are they really surrounded on
all sides by high-density regions? In this regard it is interesting
to note that while the Kirshner et al. void in Bootes appears to
have very well defined front and back edges, it appears to
continue on in at least one direction perpendicular to the line
of sight. Deep three-dimensional redshift surveys are needed.
This is time consuming but necessary work. One- or two-
dimensional surveys simply do not give us the information we
need. A two-dimensional slice through a universe with a Swiss
cheese topology can look the same as a two-dimensional slice
through a universe with a sponge-like topology, for example.
Both can show holes. The crucial question is whether the voids
are completely isolated or whether they are connected to each
other by low-density tunnels in three dimensions. We really
need full three-dimensional information to answer this ques-
tion. In looking at observational samples it is important to
remember that many of the most striking features such as col-
lapsed clusters or thin filaments or sheets are produced by
nonlinear gravitational effects. For example, a high-density,
reasonably thick bridge present in the initial conditions can
collapse to a very thin, high-density filament by the present
epoch. This is seen in N-body simulations. While nonlinear
effects can produce very high density contrast features which
are spectacular, they do not tell us very much about the initial
conditions. If we want to find out about the initial conditions,
we should start with a deep three-dimensional survey. Then we
should smooth the data with a smoothing length which
exceeds the correlation length. This way we will be looking at
fluctuations which are only just now beginning to come out of
the linear regime. Then we should construct the median
density contour and measure its topology. If the structure has
been formed by gravitational instability from initial quantum

Vol. 306

fluctuations, then we expect to find that the median density
contour gives a sponge-like topology. As we have argued, if we
pick instead a high enough density contour, we will find
isolated clusters, and if we pick a low enough density contour
we will find isolated voids (see Centrella and Melott 1983). The
important feature is that the high- and low-density regions are
treated equally. We expect to find as many clusters as voids,
and we expect as many bridges connecting clusters as low-
density tunnels connecting voids.

It is hoped that this program of observational and theoreti-
cal work will lead to a more quantitative analysis of the-topol-
ogy of the large scale structure of the universe and its relation
to the topology in the initial conditions.

Note added in manuscript—Since submitting this paper we
have made some further progress which will be reported in
future papers. Hamilton, Gott, and Weinberg (1986) have
derived a general formula for the number of holes per unit
volume in the initial conditions for a general power spectrum
of Gaussian fluctuations with random phases. Bardeen et al
(1986) have independently derived the same formula for differ-
ent purposes using a completely different method. The topol-
ogy of the median contour is sponge-like, independent of the
form of the power spectrum, and the qualitative features of
equation (11) are retained. Einasto er al. (1986) have used the
methods described in this paper to study three redshift samples
from the CfA data set, the largest containing 526 galaxies. They
constructed median density contours and studied the topology
with varying resolution. They found that the topology was
sponge-like, confirming the results presented here.
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of Chicago, and an Enrico Fermi Fellowship to A. L. M.
Numerical work was made possible by a grant from the NSF
office of Advanced Scientific Computing.
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